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Stability of a conducting rotating fluid of variable density 

By S. P. TALWAR 
Physic8 Department, Delhi University, Delhi, India 

(Received 29 June 1960) 

The Rayleigh instability of an incompressible, infinitely conducting, inviscid 
fluid of variable density is investigated under the iduenceof an horizontal 
magnetic field and coriolis forces. After establishing the equations of the pro- 
blem when both the density and the magnetic field vary with distance in the up- 
ward direction, two special cases of density distribution are studied in detail. 
Both the magnetic field and coriolis forces are found to have a stabilizing in- 
fluence on the configuration and further it is concluded that they may bring 
about stability in the configuration when it is thoroughly unstable without them. 

1. Introduction 
The problem of the hydromagnetic stability of conducting fluid of variable 

density is of considerable importance in astrophysics (e.g. in theories of sunspot 
magnetic fields, heating of solar corona,, stability of the stellar atmospheres in 
magnetic field) and has been investigated in recent years by some workers (Hide 
1955; Ferraro & Plumpton 1958). Talwar (1959) investigated the influence of a 
magnetic field on the character of the equilibrium of two superposed highly 
conducting fluids and of a stratified layer of highly conducting fluid. It was 
shown that the magnetic field has a stabilizing influence on the configuration 
and helps in bringing about stability in a configuration when it is thoroughly 
unstable without a field. However, in many astrophysical and geophysical pro- 
blems, coriolis forces also play an important role and their effect may at least be 
as important as those of electromagnetic forces. Keeping this in mind, we investi- 
gate in the present paper the effect of a magnetic field on the equilibrium of an 
inviscid, incompressible, infinitely conducting rotating fluid of variable density. 
The density stratification may be supposed to be due to a change in composition. 
In  $ 2  we shall establish the general equations of the problem, assuming that 
there is a variation of both density and the horizontal magnetic field with respect 
to  distance in the upward direction alone. For simplicity, the fluid is assumed to 
be incompressible, inviscid, and of infinite electrical conductivity, so that the 
magnetic field assumed is effectively ‘frozen’ in the fluid. However, in a more 
realistic situation one should study the problem including the effects of viscosity, 
compressibility, and finite conductivity, and it is hoped to include them in a later 
communication. 

Earlier, Lord Rayleigh (1883) initiated the study of the hydrodynamic 
stability.of a fluid of variable density. Having developed the equations for a 
horizontally stratified, non-rotating, inviscid, incompressible fluid, he discussed 
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two special density variations corresponding to (a)  two superposed fluids and 
( b )  a continuously stratified fluid. Bjerknes, Bjerknes, Solberg t Bergeron 
(1933) extended Rayleigh’s treatment for superposed fluids to include the effect 
of rotation. Further the investigation was extended by Chandrasekhar (1956) 
and Hide (1956) to include viscosity in the non-magnetic case without and with 
rotation, respectively. 

2. Equations of the problem 
Take axis Oxyz such that Ox is vertical. Suppose that there exists a horizontal 

magnetic field (stratified upwards) along the 2-direction in the fluid which is 
further assumed to have a variable density in the upward direction. Let the 
configuration rotate uniformly with an angular velocity s2 about the z-axis. 

The equation of motion appropriate to the problem under consideration is, 

where u, H denote the velocity and the magnetic field vectors and p, p, g respec- 
tively denote the pressure, density at a point and the acceleration due to gravity 
with component - g  in the z-direction (or g may denote the net acceleration 
downward in case there is an additional imposed acceleration over and above 
the usual gravitational acceleration). ,u is the permeability of the medium. 

The equation of continuity of matter is 

&+V.(pu) at = 0. 

Since the fluid is heterogenous and incompressible and the diffusion effects are 
ignored, the density of an element does not alter as the element moves about; 

(3) 
(2) then reduces to v .u  = 0. 

For a perfectly conducting fluid which is also incompressible we have 

E + ( u . V ) H  = (H.V)u. 
at 

Finally we have the equation 
V.H = 0. 

(4) 

In  order to investigate the stability of the static equilibrium configuration 
characterized by u = 0, let us consider the effect of a small velocity field dis- 
turbance u, with components u, v,  w in x-, y- and z-directions, respectively. 
We write, 

where 6p, 6p, and h are perturbations of the first order of smallness so that 
powers higher than the first and their mutual products can be ignored. Hence the 
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equations for the first-order disturbance components, with an undisturbed 
horizontal field in the x-direction, can be written as 

and 

au av aw 
ax ay az 
-+-+- = 0, 

Suppose, as usual in problems of this kind, that the components of the dis- 
turbance vary with x, y ,  z ,  t as 

(some function of z )  . exp (ikx x + ik, y + nt), 

where kx and kg are the horizontal wave-numbers of the harmonic disturbance. 
On substituting in the above equations (7)-(15) we get 

npou-2povQ = -ikx8p+(p/4n)hzDHo, (16 )  
(17) 
(18)  

ik,u+ik,,V+Dw = 0, (19) 
(20) 

nh, = Hoikxu- wDH,, (21) 
nh, = Hoikxv, (22) 
nh, = Hoik,w, (23) 

and ikxhx+ik,h,+Dh., = 0, (24) 

npov + 2p0 uR = - ik,  8p + (,uH0/4n) (ik, h, - ik, h,), 

%pow = -D8p-g8p- (p /4n)  Ho[Dh,-ikxh,+h,(DHo/Ho)], 

ndp + wDpo = 0, 

where D stands for dldz. 
We now eliminate some of the variables and derive an equation for, say, the 

component w of velocity perturbation vector. Multiply (16), (17) by ikx and ik,, 
respectively, and add, to get, on making use of (19), 

4n (26) 

(26 )  

- npo Dw - 2p0 Q(ikxv - i kvu)  - - lu ikxhsDH0 

-- ,u Hoik,[ikxhu-ik,h,] = k28p, 
47r 
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where k2 = kz + k;. Eliminate Sp from equations (25) and (18) (after having elimi- 
nated Sp by using equation (20) )  by operating the former by D and multiplying 
the latter by k2 and adding. In  this way we get 

-nD(poDw)-2QD[po(ikxv-ik,u)] --ikxD P (h,DHo) 
47T 

-- P ik~D[H,(ikxhh,-ik,h~)]+npok2w+- PHo k2 
4n 47T 

= 0. (27) 

If for a moment, we assume H = 0 and write the equation for w, we obtain, 

[ p o n k 2 - k D p o  w-nD(p,Dw) = 2SZD(p0c). (28) 
IC2 1 

where we have written, 

In  equation (27), the terms involving the magnetic field reduce to (after some 
simplications employing equation (24)) 

6 = ikxv-ik,u. (29) 

(30) P - ikx[Ho(D' - k') h, - h, D2Ho]. 
4n 

On making use of (23) we get the magnetic terms, after some simplifications, as, 

(31) - - P kz[Hi(D2- k2)  w + 2HoDwDH0]. 
4nn 

Thus the complete equation (27) for w can be written as, 

- ~ [ H ~ ( D 2 - k 2 ) w + 2 H O D H 0 D w ]  47~n = 2 W ( p 0 1 3 .  (32) 

Now eliminate Sp from equations (16 )  and (17) by multiplying the former by - ik,  
and latter by ikx and adding. We get 

npO[ikxV-ik,u] + 2 p o S Z [ i k , ~ + i k ~ ~ ] -  ( ~ / 4 7 ~ )  [ikxHo(ikzhh,-ikvhx) 
-ik,DHo.h,] = 0. (33) 

Thus the equation determining 6 becomes, 

2p0 SZDw 
6 =  

On eliminating <in equations (32) and (34), we get the equation for w as 

(34) 
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In  $0 3 and 4 we shall be studying two special cases, namely, the hydromagnetic 
stability of (i) a continuously stratified layer of fluid, and (ii) a configuration of 
two superposed fluids, respectively. 

3. Hydromagnetic stability of a continuously stratified fluid of finite 
depth 

Here we shall consider the special case in which an inviscid, infinitely conduct- 
ing layer of fluid is confined between two rigid horizontal boundaries at z = 0, 
and z = 1, and there is present a horizontal magnetic field in the x-direction. We 
assume that the density is stratified according to the law 

po(z) = plelz, 0 < z < 1, 

= 0 elsewhere, (36) 
where pl, and ,8 are constants. 

We further assume, for reasons of simplification in analysis, that the permanent 
horizontal magnetic field is also stratified in the upward direction in such a way 
that the local hydromagnetic wave velocity is constant throughout the fluid, 
which means that Hi/po is constant throughout the fluid or 

G ( z )  = H;e@. (37) 

With equations (36) and (37), the equation (35) becomes 

D2w[ ( 1  + kzV2 F )  2 + 3 + pw[ (1 + y ) + $7 
(38) 

+ w ( l + Y )  [ g p - / ( l + y ) ]  k2 = 0, 

where we have written V 2  = , u H ! / ~ ? T ~ ~ .  

We shall now discuss some special cases before coming back to the general case. 

(a )  Non-rotating conJguration 

If we suppose that the configuration is non-rotating, equation (38) simplifies to 

This particular case of zero rotation has been treated before (Talwar 1959, 
hereafter called paper I) and the equation determining n is 

where a is an integer. The equation (40) clearly manifests the stabilizing influence 
of horizontal magnetic field. Harmonic disturbances (when ,8 < 0) give rise to 
horizontal waves propagated with phase velocity given by 
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which is greater than the Alfvbn velocity V, in the direction k when p < 0. 
Here I/?ll 4 1, which means that the total density change in the fluid between 
z 5 0 and z = 1 is much less than the average density. The group velocity U,, is 

which is less than the phase velocity for p < 0. The equations (40) and (41) 
suggest that whereas under gravity alone there is complete instability for 
p > 0, there is no instability, in our present context, for wavelengths smaller than 
a certain critical value A, given by the following equation 

Again (43) shows that the critical field necessary for complete stability (corre- 
sponding to the lowest value of the parameter u, namely unity) is given by 

v; = gp12p. (44) 

Further, since n = 0 at k = 0 and also at k = k,, there should be a mode of 
maximum instability for an intermediate value of k given by 

and the growth rate, n,, of this mode is 

kk ZV, 
n, = -. 

an 

For k = k,  the wave velocity vanishes and the group velocity becomes infinitely 
large. It is interesting to note that whereas the wave velocity is more than the 
group velocity for /3 < 0 (ordinarily stable configuration), the group velocity 
becomes more than the wave velocity in the presence of a horizontal magnetic 
field for the case /? > 0 (when the configuration is thoroughly unstable without 
magnetic field) in the region of wavelength 0 to A,. Thus we conclude, in our 
present context, that, for waves which travel with speed less than the Alfvh 
wave velocity, the group velocity is greater than the phase velocity, while for 
those with speeds greater than the Alfvbn velocity the group velocity is less than 
the wave velocity. 

( b )  Rotating cmjguration without magnetic j e l d  

If the medium is field-free, and is partaking in a uniform rotation about the 
x-axis then the expression for n can be derived to be (when 1/?1/ 4 l), 

This equation shows that the coriolis force has a stabilizing influence on the con- 
figuration. For p < 0, the expressions for the phase and group velocities can be 
easily worked out. The equation (47) also suggests that even when t? > 0 (when 
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under pure gravity the configuration is thoroughly unstable) we may have 
stability provided 

Thus for a given positive value of a, and for a given angular speed, (48) defines 
a critical value k* of wave-number, namely ( 4C12a%r2/9/?12)4. For disturbances 
with wave-numbers less than this critical, the configuration will be stable and 
will be unstable only for values of the wave-number greater than this. Thus, as 
in the corresponding case of magnetic field, we find that rotation has a stabilizing 
effect. There are, however, a, few points of difference in the nature of stabilizing 
role of magnetic field and rotation. Coriolis force has greater stabilizing effect 
for large wavelength, whereas magnetic field stabilizes smaller wavelengths 
to a greater extent. Again there exists a critical magnetic field given by equation 
(44) which can remove instability altogether (for all k ) ,  but it seems that no finite 
amount of rotation can achieve that result. Also there does not seem to exist a 
maximum of the growth-rate of any mode at finite wavelength in the presence of 
rotation, although there does (vide equation 45) in the case of magnetic field. The 
maximum growth-rate occurs, in this case of zero magnetic field, at km = 00 and 
is given by n,,, = (gP) t .  The coriolis forces do not act on motion parallel to the 
axis of rotation, and the result that km = m independently of rotation is associated 
with the fact that there is no horizontal motion when km = m. 

(c) Simultaneous presence of rotation and magnetic jield 
If m,, m2 are the roots of the equation (38), then 

ml+m, = - p  (49) 

k i  V2  

and the general solution of the equation (38) is 

w(z) = Aentle+ Bemaz, (50) 

where A ,  B are constants to be determined from the boundary conditions. Since 
the fluid is bounded by rigid planes at z = 0, and z = I ,  

w = 0 at z = 0, whichgives B = - A  (51) 

and w = 0 at z = I ,  which gives e(%-%)I = 1,  (52) 

whence (m, - nz2) 1 = Zai?T, (53) 

a being an integer. Thus equation (50) may be rewritten as, 

The equation for n for different values of the parameter a can then be worked 
out to be 
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where we have written E for (4a2772+p2Z2)/4k212 for convenience, and V, denotes 
the component of Alfvbn velocity in the direction of wave-number k. The two 
roots for n2 of this equation are both real and negative for /3 < 0 and also when 
/? is positive but less than (1 + E )  . (k2Vi/g) .  Thus we can conclude that a configura- 
tion of stratified fluid under the joint influence of a horizontal magnetic field and 
the coriolis force will be stable not only when the density is decreasing function 
of the vertical distance but even when p > 0 and less than [(l +E)k2Pk] /g .  
The configuration will therefore be unstable only when @ > [( 1 + E )  k 2 E ] / g ,  

2.0 

n 

1.0 

0 0 5  1.0 1.5 2.0 2.5 3.0 
k 

FIGURE 1. Illustrates the inhibiting influence of rotation in the unstable cwe of a con- 
tinuously stratified fluid with horizontal magnetic &Id. The growth-rate n (measured with 
the unit nV,/Zsec-l) ie plotted as a function of wave-number k (measured with the unit 
n/Z cm-1) for B (= g/?P/n*V;) = 10 and for 8eVer81 values of A (= 4R4Z*/n*V~). 

since then one of the two roots of the above equation becomes positive. When the 
configuration is stable, harmonic disturbance leads to propagation of horizontal 
waves with velocity given by the following expression: 

qlPz = [ G + 2(a2n2 + k z p r ]  + [ 1 2:a?77? TiiFr + 4 ~ i  (a2 iyk2p ,1” .  
4R2a%r2/k2 - gpl2 - 4Q a n / 

( 5 6 )  
We may also write this expression as 

(57) 
4Q2U2772/k2 - gp12 

2(a2772 + k??) %,*- vi = 

We find therefore that simultaneous presence of rotation and field produces a 
stabilizing effect; as we have already seen, that rotation and magnetic field 
individually also have a stabilizing influence. 



Xtability of a conducting rotating jluid of variable density 589 

In  the unstable case (,8 > [( 1 + E) k2ViJ /g )  we are interested in the real positive 
root of equation (55 ) .  Let us measure k and n in units of (m/l)crn-l and 
(mV,/Z) sec-l, respectively, so that the equation (55)  can be rewritten in the form 

(59) 
spt” 

n-2 v; where A = 4Q2a2/.rr2Pk and B = - 

are pure numbers. 
The calculation of the positive root of the above equation has been carried out 

for B = 10 and for several values of A for the case 01 = 1, and the results are 
presented graphically in figure 1. Curves of n against k for B = 10 and A = 0, 1,10, 
lo2 are given. These curves clearly show (i) that for a given k, n decreases with 
increase in A ,  (ii) that n,, the maximum growth-rate, also decreases with in- 
crease of A ,  and (iii) that k,, the wave-number for the mode of maximum in- 
stability increases with increasing A .  The parameter A being a measure of the 
relative dynamical importance of the coriolis forces with the magnetic forces, 
we can conclude that, for a given B, the effect of increase in rotation is to increase 
the time taken for the system to depart from equilibrium and to decrease the 
wavelength of the mode of maximum instability. 

4. Hydromagnetic stability of two superposed rotating fluids 
In  this section we shall investigate the effect of a uniform horizontal magnetic 

field on the equilibrium of two uniform, inviscid, infbitely conducting, super- 
posed rotating fluids. The fluids will be taken to have uniform densities p1 (for 
lower fluid) and p2 (for upper fluid) and will be assumed to rotate uniformly about 
the z-axis. 

In  this particular case equation (35) reduces to 

[. +p$ 21’ ( 0 2 -  kz) w + 4Q2DZw = 0, 

since we have assumed Dp = 0 and DH = 0. 
The equation is true for either fluid. Hence we can write 

wl = Alemiz+Ble-mlZ 

w2 = Aze-%=+ B,e%@ 
(z < 0) ,  
( z  > 0). 

The boundary conditions to be satisfied are as follows. (i) The velocity should 
vanish at z = --oo (for lower fluid) and at z = +a (for upper fluid). (ii) The 
normal component of velocity should be continuous at the interface, i.e. to our 
approximation w(z) is continuous at z = 0. (iii) The pressure should be con- 
tinuous across the interface, which means that 

where the subscripts 1, 2 stand for the lower ( z  < 0) and upper fluids ( z  > 0) ,  
respectively. Here 6 denotes the displacement of the interface given by w/n. 
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On applying the boundary conditions (i) and (ii), we find that equations (61 )  
and (62 )  become 

w1 = A e q Z  ( z  < 0) ,  w, = A e-%z ( x  > 0) ,  (64)  

since A,  = A ,  = A .  

find that the equation (63 )  gives the following equation for n: 
On making use of the equations (21)-(23),  (26)  and (34 )  and simplifying, we 

gk(pz-pl)  = p 1 [ ( n 2 + k 2 ~ ~ ) z + 4 5 2 ~ a ] * + p z  [(n2+ kzV&)z+452%2]*. ( 6 5 )  

This equation reduces to Rayleigh’s result, namely n2 = gk(p, -pl)/(pl +pz) ,  
when both the coriolis force and the magnetic field are absent. The above 
equation is an 8th-degree equation in n, and is too difficult to be discussed without 
making some simplifications. Let us therefore investigate some simple special 
cases before we come back to the general case when both rotation and the 
magnetic field are present simultaneously. 

(i) Non-rotating superposed fluids with magnetic field (52 = 0, H + 0): 
The equation for n is 

this case has been thoroughly discussed in paper I. 
(ii) Rotating superposed fluids with zero magnetic field (52 += 0, H = 0). This 

is a purely hydrodynamic case originally solved by Bjerknes et al. (1933), and 
the expression for n is easily seen to be (cf. Hide 1966) 

Pz - P1 = g k a ,  where a =  - 
P1+ Pz 

or alternatively, 
n2 = gka[( 1 + z2)* - 21, where 2 = 2Q2/gka. (67)  

When pa > pl, a and z are both positive and the configuration is unstable as in 
the non-rotating case, but the effect of increase in rotation is to decrease the 
positive value of rc for a definite positive a. 

Alternatively, when pz < pl, the situation is thoroughly stable, as is also the 
case with zero rotation, and the effect of rotation is to increase the stability of the 
configuration since it makes nz more negative. 

(iii) Homogeneous fluid under the joint influence of rotation and field 

For a single fluid carrying a uniform horizontal magnetic field and rotating 
(P1 = Pz = P I .  

uniformly about the vertical axis, the equation for n is 

n4+nz(4522+2k2V~)+  Vik4 = 0, (68)  
which gives 

(69)  

the two roots are always negative thus showing stability. Harmonic disturbances 
lead to the propagation of two stable modes of waves with phase velocities given 

n : , = -  (252, + k2Pk) + 252( Q2 + kZv2,)a; 

bY 
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where x is written for RIkV,. Thus we find that the effect of coriolis force is to 
split an Alfvbn wave into two waves travelling with different wave-speeds, one 
greater and one less than the Alfvbn velocity. A similar result for a different 
orientation of field and rotation axes was obtained by Lehnert (1964). The group 
velocities for the two modes can be easily evaluated and are found to be 

( 7 1 )  
- v, UPl, I -- 

%,a = - ( 1  + 2 2 ) h  [( 1 + x2)) k x ]  ( 1  + s2 )h ’  

wherefrom it follows that for both modes the group velocity is less than the 
Alfvh velocity. Also it follows from the above expressions (70) ,  (71)  that for 
the mode for which the phase velocity is more than the Alfv6n velocity, the 
corresponding group velocity is less than the phase velocity, but for the other 
mode for which the phase velocity is less than the Alfvh velocity, the corre- 
sponding group velocity is more than the phase velocity. 

(iv) Instability in superposed fluids under joint influence of rotation and field. 
Putting p2/p1 = y ,  we can rewrite equation (66)  as 

g k ( y -  1 )  = [(n2+ k2Vi1)2+4Rzn2]*+ y[{n2+k2(Vil/y)}2+4R%2]~. (72 )  

As the equation cannot be easily discussed without simplifications, let us be 
satisfied with the investigation of the characteristics of the mode of maximum 
instability (when p2 > pl) under two conditions, namely, the ‘high’ and ‘low’ 
rotation cases. Because there is no fixed length scale in the system, we require 
that the coriolis force exceeds or is less than the other forces operating, that is, 
that f l zn , ,  and sZZk,V& 

according as we are dealing with ‘high ’ or ‘low’ rotation. 

(a) Instability in the ‘low rotation’ w e  
In this case the magnetic field influences the motion much more than the coriolis 
force. The solution in the limiting case of zero rotation has already been given 

We expect that introduction of low rotation should not lead to results very 
different from the results quoted above for R = 0.  Under the assumptions 
n,,, > R Land k,  V,, > Q, we get the following characteristic equation for n 

n2(y+1) = [q (y -1 )k -2k2VE, ]  [ I - - - -  ;;il :=’,”] * (74)  

On differentiating this expression with respect to k ,  and putting dnldk = 0, 
we find that for the mode of maximum instability 

and 
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where (n,)o represents the growth rate of the mode of maximum instability for 
zero rotation as given by (73) above. The value of k ,  occurring on the right sides 
of the above expressions may, to  the first order of approximation, be taken to 
refer to the zero rotation case. Thus we see that the presence of slow rotation in 
superposed fluids permeated by a horizontal field decreases the growth rate of the 
mode of maximum instability and, at  the same time, increases the wave-number 
of this mode. 

( b )  Instability in the high rotation cme 

When the magnetic field is zero, it easily follows that, under the assumption 
n2 < Q2, 

to the fist approximation. Thus the mode of maximum instability, under pure 
rotation of a configuration of inviscid superposed fluids, is characterized by 
n, = co and km = co. We are interested in investigating the influence of the 
introduction of a small magnetic field on this configuration. It is easily seen that 
with the assumptions fi > n, and 52 9 km&,, the characteristic equation for 
n becomes 

which to  the first order of approximation yields the following results for the mode 
of maximum instability: 

These equations show that the effect of introduction of low magnetic field in 
a rotating configuration of two superposed fluids of zero viscosity is to decrease 
both the wave-number and the growth-rate of the mode of maximum instability. 
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